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Chapter 4

VECTOR VALUED FUNCTION

4.1 Scalar and Vector Field Functions

A vector functions are functions whose values are vectors:

v = v(p) = (v1(p), v2(p), v3(p))

depending on the points p in space, and Scalar functions are functions whose values are scalars:

f = f(p)

depending on p.

Definition 1 A scalar function F (x, y, z) defined over some region of space D is a function that assigns to
each point P0 in D with coordinates (x0, y0, z0) the number F (P0) = F (x0, y0, z0). The set of all numbers F(P)
for all points P in D are said to form a scalar field over D.

Definition 2

1. Let D be a set in <2(a plane region). A vector field on <2 is a function F (x, y) that assigns to each
point (x, y) in D a two-dimensional vector:

F (x, y) = f(x, y)i+ g(x, y)j

where f and g are scalar functions.

2. Let D be a subset in <3. A vector field on <3 is a function F (x, y, z) that assigns to each point
(x, y, z) in D a three-dimensional vector:

F (x, y, z) = f(x, y, z)i+ g(x, y, z)j + h(x, y, z)k

where f, g and h are scalar functions.

Vector Valued Function
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Figure 4.1: Examples of vector fields

Example

1. The scalar function of position F (x, y, z) = xyz2 for (x, y, z) inside the unit sphere x2 + y2 + z2 = 1
defines a scalar field throughout the unit sphere.

2. The distance f(p) of any point p from a fixed point pO in space is a scalar function. f(P ) defines a
scalar field in space and given by

f(P ) = f(x, y, z) =
√

(x− xo)2 + (y − yo)2 + (z − zo)2

3. The vector function F (x, y, z) = (x− y)i+ (y − z)j + (xyz − 2)k for (x, y, z) inside the ellipsoid
x2

a2
+ y2

b2
+ z2

c2
= 1, defines a vector field throughout the ellipsoid.

4.2 Vector-valued functions

Definition 3 A Vector valued function is simply a function whose domain is a set of real numbers and
whose range is a set of vectors. The vector valued functions whose values are three-dimensional vectors is
given by

r(t) = (f(t), g(t), h(t)) = f(t)i+ g(t)j + h(t)k

where the scalars f(t), g(t) and h(t) are components of r(t).

Example:If r(t) = (t3, ln(3− t),
√
t), then

1. the domain of r(t) is [0, 3)

2. r(0) = (0, ln3, 0) = ln3j

3. r(1) = (1, ln2, 1) = i+ ln2j + k

Example: The vector valued function r(t) = costi+ 2t2j + 3tk, then r(0) = i, r(π) = −i+ 2π2j + 3πk and
r(2) = cos2i+ 8j + 6k
Note The vector valued function in <2 has the form r(t) = f(t)i+ g(t)j where f(t) and g(t) are the
component functions of r.

Vector Valued Function
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4.3 Calculus of vector valued functions

4.3.1 Limits and Continuity

The limit of a vector function is defined by taking the limits of its component functions as follows:

Definition 4 If r(t) = (f(t), g(t), h(t)), then

lim
t→to

r(t) = ( lim
t→to

f(t), lim
t→to

g(t), lim
t→to

h(t))

provided the limits of the component functions exist.

Examples:

* If r(t) = (1 + t3)i+ te−tj + sint
t k, then limt→0 r(t) = i+ k

If r(t) = (2 + t2)i+ (t+ 1)j + t
t2+1

k, then limt→1 r(t) = 3i+ 2j + 1
2k

* Definition 5 A vector valued function r(t) is continuous at to if

lim
t→to

r(t) = r(to)

A vector valued function is continuous for each value of t if each component functions are continuous for all
real number t.

Example: Let r(t) = 1
2−t i+ lntk, then r(t) is continuous for all t > 0 with t 6= 2.

Example: Let r(t) = tan ti+ t
t2−1j + 3tk, then r(t) is continuous for all t with t 6= 1,−1 and 2nπ+π

2 where
n ∈ Z.

4.3.2 Derivatives and Integrations

Definition 6 The derivative of the vector valued function r(t) is the vector function formed by differentiating
each components of r(t) with respect to t. That is r′(t) = (f ′(t), g′(t), h′(t))

Example: Let r(t) = sinti+ e2tj + ln(3t− 1)k, then r′(t) = costi+ 2e2tj + 3
3t−1 and r′(0) = i+ 2j − 3k,

r′(1) = cos1i+ 2e2j + 3
2k

Example: Let r(t) = 1
2t i+ t3 + 5k, then r′(t) = − 1

2t2
i+ 3t2j and r′(1) = −1

2 i+ 3j, r′(−2) = −1
8 i+ 12j.

Definition 7 If r(t) = (f(t), g(t), h(t)), then the integral of r(t) is given by∫
r(t)dt =

(∫
f(t)dt,

∫
g(t)dt,

∫
h(t)dt

)

Example: Let r(t) = sinti+ e2tj + (3t2 − 1)k, then∫ π

0
r(t)dt = 2i+

1

2
(e2π − 1)j + (π3 − π)k

Example: Let r(t) = ti+ (tet)j + (3t2)k, then∫
r(t)dt = (

1

2
t2 + c1)i+ (tet + et + c2)j + (t3 + c3)k

Vector Valued Function
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4.4 Curves, Arc Length and Tangent vectors

4.4.1 Curves and Parametric Representations

Definition 8 A space curve (or simply curve) is the range of a continuous vector-valued function on an
interval of real numbers.

Example: Line, circle, parabola, ellipse,circular helix, etc are same examples of curves.

Suppose C be a smooth curve in space, then the coordinates (x, y, z) can be represented by the equation

x = f(t), y = g(t) and z = h(t)

is called parametric representation of the curve C and t is called parameter. A vector equation of this
curve is given by

r(t) = f(t)i+ g(t)j + h(t)k

Parametric representation of Line

The parametric representation of line l which passing through the point(xo, yo, zo) and parallel to the vector
v = ai+ bj + ck is given by

x = xo + at, y = yo + bt and z = zo + ct where t ∈ <

and the vector equation is

r(t) = (xo + at)i+ (yo + bt)j + (zo + ct)k t ∈ <

EXAMPLE: Find the parametric representation of the line that passing through (2,−3, 2) and parallel to
the vector v = 2i+ 4j − 3k.
Solution: Let (xo, yo, zo) = (2,−3, 2) and the parallel vector v = ai+ bj + ck = 2i+ 4j − 3k, then the
parametric representation of this line is

x = xo + at = 2 + 2t, y = yo + bt = −3 + 4t, z = zo + ct = 2− 3t

for t ∈ <.
⇒ r(t) = (2 + 2t)i+ (−3 + 4t)j + (2− 3t)k for t ∈ <

EXAMPLE: Find the parametric representation of the line segment from the point (2,−1, 3) to (3, 4, 0)?
Solution: Let p(xo, yo, zo) = (2,−1, 3) and q(x1, y1, z1) = (3, 4, 0), then the parallel vector to the line is
v = −→pq = i+ 5j − 3k.

Vector Valued Function
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Thus, the parametric representation of this line is
x = xo + at, y = yo + bt and z = zo + ct

⇒ x = 2 + t, y = −1 + 5t and z = 3− 3t where 0 ≤ t ≤ 1
Remark: The parametric representation of the line segment from the point (xo, yo, zo) to (x1, y1, z1) is given
by:

x = xo + (x1 − xo)t, y = yo + (y1 − yo)t, z = zo + (z1 − zo)t for 0 ≤ t ≤ 1

Parametric representation of Circles and Ellipse

Definition 9 The parametric representation of circle center at (a, b) and radius r, (x− a)2 + (y − b)2 = r2, is

r(t) = (a+ rcost)i+ (b+ rsint)j for 0 ≤ t ≤ 2π

Definition 10 The parametric representation of ellipse, (x−xo)2
a2

+ (y−yo)2
b2

= 1, is

r(t) = (xo + acost)i+ (yo + bsint)j for 0 ≤ t ≤ 2π

Examples:Find the parametric(vector) representation of the following curves of

1. circle center at the origin and radius 2 in the first quadrant

2. circle center at (3,−2 and radius 4.

3. an ellipse (x+3)2

4 + (y−1)2
9 = 1

4. an ellipse 4x2 + 9y2 = 36

5. intersection of the cylinder x2 + y2 = 1 and the plane y + z = 2.
Solution5: show how the plane and the cylinder intersect, which shows the curve of intersection C,
which is an ellipse.

Vector Valued Function
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The projection of C onto the xy-plane is the circle x2 + y2 = 1, z = 0 . So we know

x = cost, y = sint for 0 ≤ t ≤ 2π

→ z = 2− y = 2− sint

So we can write parametric equations for C as

x = cos t, y = sin t,= 2− sin t 0 ≤ t ≤ 2π

The corresponding vector equation is

r(t) = cos ti+ sin tj + (2− sin t)k 0 ≤ t ≤ 2π

Other Solutions: Exercise
Examples:Describe the curve defined by the vector function

1. r(t) = (1 + t, 2 + 5t,−1 + 6t)
Solution: The corresponding parametric equations are

x = 1 + t, y = 2 + 5t, z = −1 + 6t

which is the parametric equations of a line passing through the point (1, 2,−1 and parallel to the vector
v = i+ 5j + 6k.

2. r(t) = costi+ sintj + tk
Solution: The corresponding parametric equations are

x = cost, y = sint, z = t

since x2 + y2 = (cost)2 + (sint)2 = 1, the curve must lie on the circular cylinder x2 + y2 = 1. The point
(x, y, z) lies directly above the point (x, y, 0), which moves counterclockwise around the circle
x2 + y2 = 1 in the xy-plane. Since z = t, the curve spirals upward around the cylinder as t increases.
Thus, the curve is called a circular helix.

3. r(t) = 3costi+ 3sintj for 0 ≤ t ≤ π

4. r(t) = costi− sintj for 0 ≤ t ≤ 2π

5. r(t) = (2cost, 3sint, 0)

6. r(t) = (6− t2)i+ 1
2 tj for −2 ≤ t ≤ 4

Vector Valued Function
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Velocity, Speed and Acceleration

If r(t) = f(t)i+ g(t)j + h(t)k is represent the object, then

* The position is r(t) = f(t)i+ g(t)j + h(t)k

The Velocity is v(t) = r′(t) = f ′(t)i+ g′(t)j + h′(t)k

** The Speed is ‖v(t)‖ =
√

(f ′(t))2 + (g′(t))2 + (h′(t))2

* Acceleration is a(t) = r′′(t) = f ′′(t)i+ g′′(t)j + h′′(t)k

Example: Find the velocity, speed and acceleration of an object
1) r(t) = etsinti+ etcostj + etk 2) r(t) = coshti+ sinhtj + tk
Example: Find the position, velocity and speed of an object having acceleration
1) a(t) = − cos ti− sin tj; vo = k and ro = i
2 a(t) = eti+ e−tj; vo = i− j +

√
2k and ro = i+ j

4.4.2 Tangent Vector

Definition 11 If C is the graph of a smooth vector-valued function r(t) in 2-space or 3-space, then the vector
r′(t) is nonzero, tangent to C at any point t and r′′(t) is normal to C at any point t. Thus, by normalizing
r′(t) we obtain a unit vector

T (t) =
r′(t)

‖r′(t)‖

We call T (t) the unit tangent vector to C at t. And the unit normal vector is given by

N(t) =
T ′(t)

‖T ′(t)‖
=

r′′(t)

‖r′′(t)‖

Example:
a) Find the unit tangent vector to the graph of r(t) = t2i+ t3j at t = 2.
Solution: Since

r′(t) = 2ti+ 3t2j

is the tangent vector at any point t. Thus, the unit tangent vector at t = 2 is

T (2) =
r′(2)

‖r′(2)‖
=

4i+ 12j√
16 + 144

=
1√
10
i+

3√
10

b) Find the unit tangent and unit normal vectors to the ellipse x2 + 4y2 = 4 at (
√

2, 1√
2
).

Vector Valued Function
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4.4.3 Arc Length of the curve

Definition 12 Let C be a curve with a piecewise smooth parametrization r defined on [a, b]. Then the length
L of C is defined by

L =

∫ b

a
‖r′(t)‖dt =

∫ b

a

∣∣∣∣∣∣∣∣drdt
∣∣∣∣∣∣∣∣ dt

Note: If r(t) = x(t)i+ y(t)j + z(t)k for a ≤ t ≤ b, then

Example:Find the length L of the segment of the circular helix

r(t) = costi+ sintj + tk for 0 ≤ t ≤ 2π

Solution: since r′(t) = −sinti+ costj + k and

‖r′(t)‖ =
√

(−cost)2 + sin2t+ 1 =
√

2

Thus, the arc length is

L =

∫ 2π

0
‖r′(t)‖dt =

∫ 2π

0

√
2dt = 2

√
2π

Example:Find the length L of the twisted cubic curve

r(t) = ti+

√
6

2
t2j + t3k for − 1 ≤ t ≤ 1

Example:Find the length the length of the curve

r(t) = (1 + 3t2, 4 + 2t3) for 0 ≤ t ≤ 1

Example: Show that the circumference of the circle center at the origin and radius r is 2πr.
Example:Find the length of circle center at the origin and radius 4 in the first quadrant.

Vector Valued Function
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4.4.4 Arc Length Function

Let C be a smooth curve parameterized on the interval I by

r(t) = x(t)i+ y(t)j + z(t)k, fort ∈ I

and let a be a fixed number in I. We define the arc length function s by

s(t) =

∫ t

a
‖r′(u)‖du =

∫ t

a

√
(x′(u))2 + (y′(u))2 + (z′(u))2du

Notice that if t ≥ a, then s(t) is the length of the portion of the curve between r(a) and r(b), and if r(t)
denotes the position of an object at time t ≥ a, then s(t) is the distance traveled by the object between time a
and time t.Or equivalently,

ds

dt
= ‖dr

dt
‖ =

√
(x′(t))2 + (y′(t))2 + (z′(t))2

⇒ s = s(t) =

∫ t

a
‖r′(u)‖du

It is often useful to parameterize a curve with respect to arc length because arc length arises naturally from
the shape of the curve and does not depend on a particular coordinate system. If a curve r(t) is already given
in terms of a parameter t and s(t) is the arc length function given by above Equation, then we may be able to
solve for t as a function of s:t = s(t). Then the curve can be re-parameterized in terms of s by substituting for
t:r = r(t(s)).
Example: Suppose that r(t) = ti+ t2j + t3k, then find the arc length function.
Solution:since r′(t) = i+ 2tj + 3t2k, then

ds

dt
= ‖dr

dt
‖ =

√
(x′(t))2 + (y′(t))2 + (z′(t))2 =

√
1 + 4t2 + 9t4

Example:Re-parameterize the helix r(t) = costi+ sintj + tk with respect to arc length measured from
(1, 0, 0) in the direction of increasing t.
Solution:The initial point (1, 0, 0) corresponds to the parameter value t = 0.

ds

dt
= ‖r′(t)‖ =

√
2

Vector Valued Function
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and the arc length function is

s = s(t) =

∫ t

0
‖r′(u)‖du =

∫ t

0

√
2du =

√
2t

Therefore, t = s√
2

and the required re-parametrization is obtained by substituting for t:

r(t(s)) = cos(
s√
2

)i+ sin(
s√
2

)j +
s√
2
k

4.4.5 Curvature

Suppose that C is the graph of a smooth vector valued function that is parameterized in terms of arc length
function. The ”sharpness” of the bend in C is closely related to dT

ds , which is the rate of change of the unit
tangent vector T with respect to s.

Definition 13 Let C have a smooth parametrization r such that r′ is differentiable. Then the curvature κ of
C is defined by the formula

κ =
‖T ′(t)‖
‖r′(t)‖

Examples:

• Find the Curvature of a straight line.

• Find the Curvature for a circle of radius r.
Solution:We can take the circle to have center the origin, and then a parametrization is

r(t) = rcosti+ rsintj

⇒ r′(t) = −rsinti+ rcostj and ‖r′(t)‖ = r

so, T (t) = r′(t)
‖r′(t)‖

and T ′(t) = −costi− sintj and ‖T ′(t)‖ = 1
So that the Curvature is

κ =
‖T ′(t)‖
‖r′(t)‖

=
1

r

• Find the Curvature of r(t) = (2sint, 2cost, 4t)

Theorem:If r(t) is a smooth vector valued function, then for each value of t at which T ′(t) and r′′(t) exist,
the Curvature κ can be expressed as

κ(t) =
||r′(t)× r′′(t)||
||r′(t)||3

Vector Valued Function
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4.5 Divergence and Curl

Definition 14 Let F (x, y, z) = f(x, y, z)i+ g(x, y, z)j + h(x, y, z)k be a differentiable vector field function.
Then

• the divergence of F, denoted by DivF, is given by

DivF =
∂f

∂x
+
∂g

∂y
+
∂h

∂z

which is a scalar field function.

• the Curl of F is given by

CurlF = (
∂h

∂y
− ∂g

∂z
)i+ (

∂f

∂z
− ∂h

∂x
)j + (

∂g

∂x
− ∂f

∂y
)k

which is a vector field function.

Note: curlF = ∇xF =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

f g h

∣∣∣∣∣∣
Example: Find the Divergence and Curl of the following vector field functions
a) F (x, y, z) = (2xy, xyz2 − sin(yz), zex+y)
Solution:i) Divergence of F is

DivF =
∂(2xy)

∂x
+
∂(xyz2 − sin(yz)

∂y
+
∂(zex+y)

∂z

DivF = 2y + xz2 − zcos(yz) + ex+y

DivF (1, 1, 0) = 2 + e2

ii) Curl of F is

CurlF =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2xy xyz2 − sin(yz) zex+y

∣∣∣∣∣∣
CurlF = (zex+y − 2xyz + ycos(yz))i− zex+yj + (yz2 − 2x)k

CurlF (1, 1, 0) = −i− 2k

b) F (x, y, z) = (y, 2xz, zex)
c) F (x, y) = (x3 + y)i+ (2x2y + y3)j

Vector Valued Function
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4.6 Line Integrals

4.6.1 Line Integral of Scalar functions

Suppose that a plane curve C given by the parametric equations

r(t) = x(t)i+ y(t)j a ≤ t ≤ b

is smooth curve.If we divide the parameter interval [a, b] into n subintervals [ti−1, ti] of equal width and we let
xi = x(ti) and yi = y(ti). If 4si represents the arc length of Ci and the norm of the partition ‖p‖ to be the
maximum of the arc lengths 4si, then the Line integral of the scalar function f(x, y) on the curve
C:r(t) = x(t)i+ y(t)j for a ≤ t ≤ b is∫

C
f(x, y)ds = lim

‖p‖→0

n∑
i=1

f(x∗i , y
∗
i )4si

provided the limit exists.

Definition 15 If f is defined on a smooth curve C: r(t) = x(t)i+ y(t)j for a ≤ t ≤ b, then the line integral
of f along C is ∫

C
f(x, y)ds =

∫ b

a
f(x(t), y(t))

√
(x′(t))2 + (y′(t))2dt =

∫ b

a
f(x(t), y(t))‖r′(t)‖dt

Note:The line integral of f(x, y, z) over the curve C:r(t) = x(t)i+ y(t)j + z(t)k for a ≤ t ≤ b is given by∫
C
f(x, y, z)ds =

∫ b

a
f(x(t), y(t), z(t))‖r′(t)‖dt

Examples:Evaluate the line integral of f over the curve C

• f(x, y, z) = xy,over C:r(t) = (4cost, 4sint,−3) for 0 ≤ t ≤ π
2

Solution: Since x(t) = 4cost, y(t) = 4sint, z(t) = −3 and

r′(t) = (−4sint, 4cost, 0) and ‖r′(t)‖ = 4

Thus, the line integral of f over C is∫
C
xyds =

∫ π
2

0
x(t)y(t)‖r′(t)‖dt =

∫ π
2

0
(4cost)(4sint)4dt
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=

∫ π
2

0
64costsint let u = sint, du = costdt

=

∫ π
2

0
64udu = 32u2 = 32sin2t|

π
2
0 = 32

• f(x, y) = 2 + x2y, where C is the upper half of the unit circle x2 + y2 = 1.

• f(x, y, z) = ysinz, where C is a circular helix given by r(t) = costi+ sintj + tk, 0 ≤ t ≤ 2π

Suppose C is a piecewise-smooth curve; that is, C = C1 ∪ C2 ∪ ... ∪ Cn where C1, C2, ..., Cn are smooth
curves.Then ∫

C
fds =

∫
C1

fds+

∫
C2

fds+ ...+

∫
Cn

fds

Example:Evaluate
∫
C 2xds, where C is the parabola y = x2 from (0, 0) to (1, 1) followed by the vertical line

segment from (1, 1) to (1, 2).
Solution: Since C is piecewise smooth and C = C1 ∪ C2. The Parametric representation of those curves are
The parametric of the parabola: let x = t and then y = t2,

C1 : r1(t) = ti+ t2j, 0 ≤ t ≤ 1

The parametric of the line is

C2 : r2(t) = (1 + (1− 1)t)i+ (1 + (2− 1)t)j = i+ (1 + t)j, 0 ≤ t ≤ 1

Thus, the line integral is ∫
C

2xds =

∫
C1

2xds+

∫
C2

2xds

=

∫ 1

0
2x(t)‖r′1(t)‖dt+

∫ 1

0
2x(t)‖r′2(t)‖

=

∫ 1

0
2t
√

1 + 4t2dt+

∫ 1

0
2dt

=
5
√

5− 1

6
+ 2

4.6.2 Line Integral of Vector Field Functions

Definition 16 Let F be a continuous vector field defined on a smooth curve C given by a vector function
r(t),a ≤ t ≤ b. Then the line integral of F along C is∫

C
F.dr =

∫ b

a
F (r(t)).r′(t)dt
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Note:Since dr = (dx, dy, dz), F = (f, g, h) and r′ = dr
dt , then∫

C
F.dr =

∫
C

(fdx+ gdy + hdz) =

∫ b

a
(fx′ + gy′ + hz′)dt

Example:Find the line integral,
∫
C F.dr, where

i) F (x, y, z) = (z, x, y) over the curve C:r(t) = (cost, sint, 3t) for 0 ≤ t ≤ 2π
Solution:Since x = cost, y = sint and z = 3t, we have

F (r(t)) = (3t, cost, sint) = 3ti+ costj + sintk

and r′(t) = −sinti+ costj + 3k

Therefore, the line integral over C is∫
C
F.dr =

∫ 2π

0
F (r(t)).r′(t)dt =

∫ 2π

0
(−3tsint+ cos2t+ 3sint)dt

= (3tcost− 3sint+
1

2
t− 1

4
sin2t− 3cost)|2π0

= 7π

ii) F (x, y) = (−y,−xy) over the curve C is a circular arc x2 + y2 = 1 in the first quadrant.
Solution: The parametric representation of C is

r(t) = costi+ sintj, 0 ≤ t ≤ π

2

and F (r(t)) = −sinti− costsintj, r′(t) = −sinti+ cost
Thus, the line integral is ∫

C
F.dr =

∫ π
2

0
(sin2t− cos2tsint)dt

=
1

2
t− 1

4
sin2t+

1

3
cos3t)|

π
2
0

=
π

4
− 1

3

Ex:Suppose an object moves along the parabola y = x2 from the point (−1, 1) to (2, 4). find the total work
done if the motion is caused by the force field F (x, y) = (x2 + y2, 3x2y).
Remark:1) If C = C1 ∪ C2 ∪ ... ∪ Cn, then∫

C
F.dr =

∫
C1

F.dr +

∫
C2

F.dr + ...+

∫
Cn

F.dr

2)

∫
−C

F.dr = −
∫
C
F.dr

Example:Let C be the curve consisting of the quarter circle x2 + y2 = 1 in xy-plane from (1, 0) to (0, 1),

followed by the horizontal line segment from (0, 1) to (2, 1). Compute

∫
C

(x2ydx+ y2dy)

Solution:Since C is piecewise smooth and C = C1 ∪ C2, where C1 is circle and C2 is horizontal line segment.
The parametric of those curves are

C1 : r1(t) = costi+ sintj, 0 ≤ t ≤ π

2

C2 : r2(t) = 2ti+ j, 0 ≤ t ≤ 1
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The line integral over C is∫
C
F.dr =

∫
C1

F.dr +

∫
C2

F.dr

=

∫ π
2

0
F (r(t)).‖r′1(t)‖dt+

∫ 1

0
F (r(t)).‖r′2(t)‖dt

= −
∫ π

2

0
cos2tsin2tdt+

∫ π
2

0
sin2tcostdt+

∫ 1

0
8t2dt

= −
∫ π

2

0
(costsint)2dt+

1

3
sin3t|

π
2
0 + +

8

3
t3|10

= −
∫ π

2

0
(
1

2
sin2t)2dt+

1

3
+

8

3

= −
∫ π

2

0

1

4
(
1

2
− 1

2
cos4t)dt+ 3

= − π

16
+ 3

Example:Evaluate

∫
C
F.dr where F = (x,−z, 2y) from (0, 0, 0) straight to (1, 1, 0), then to (1, 1, 1), back to

(0, 0, 0).

4.6.3 INDEPENDENCE OF PATH AND CONSERVATIVE VECTOR FIELDS

Definition 17 (Independent of Path)

The line integral

∫
C
F (r).dr is independent of path on a set D if for any point A and B in D, the line

integral has the same value over any paths in D having initial point A and terminal point B. And the vector
field F is Conservative on D.

Definition:If F is a field defined on D and F = ∇f for some scalar function f on D, then f is called a
Potential function for F .
Theorem:(Path independence)

A line integral

∫
C
F (r).dr with continuous F1, F2, F3 in D is path independent in D iff F = (F1, F2, F3) is

the gradient of some function f in D, that is

F = ∇f, orF1 =
∂f

∂x
, F2 =

∂f

∂y
, F3 =

∂f

∂z

Theorem:(Fundamental theorem for line integral)
If the vector field F is conservative and F = ∇f in D from the point A to B, then the line integral is∫

C
F (r).dr = f(B)− f(A)
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Theorem: (Test for a Conservative Field)

The vector field F = (F1, F2, F3) in the line integral

∫
C
F (r).dr is Conservative in D iff

∂F3

∂y
=
∂F2

∂z
,
∂F1

∂z
=
∂F3

∂x
,
∂F2

∂x
=
∂F1

∂y
, or CurlF = 0

Note:If F = (F1, F2) is conservative in D iff ∂F2
∂x = ∂F1

∂y

Examples:Show that the line integral

∫
C
F (r).dr is path independent in any domain D and find its value

where C run from the point A to B.
a)F = (excosy,−exsiny); from A = (0, 0) to B = (2, π4 )
Solution: Since F1 = excosy and F2 = −exsiny, and so

∂F1

∂y
= −exsiny =

∂F2

∂x

Thus, the vector field F is conservative, so that the line integral

∫
C
F (r).dr is independent of path. Let f be

the potential function of F such that F = ∇f .

⇒ ∂f

∂x
= F1 = excosy,

∂f

∂y
= F2 = −exsiny

Take ∂f
∂x = F1 = excosy, integrate w.r.t x, we get

f(x, y) = excosy + h(y)

Differentiate f w.r.t y, then we get

∂f

∂y
= −exsiny + h′(y) = −exsiny

⇒ h′(y) = 0

⇒ h(y) = c

Therefore, f(x, y) = excosy + c is the potential function of F. Thus, the line integral from A to B is∫
C
F.dr =

∫ B

A
F.dr = f(B)− f(A) = f(2,

π

4
)− f(0, 0) =

e2
√

2

2
− 1

b) F = (2xyz2, x2z2 + zcos(yz), 2x2yz + ycos(yz)) from A = (0, 0, 1) to (1, π4 , 2).
Solution:Since the CurlF is

CurlF =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2xyz2 x2z2 + zcos(yz) 2x2yz + ycos(yz)

∣∣∣∣∣∣
⇒ CurlF = (2x2z + cosyz − yzsinyz − 2x2z − cosyz + yzsinyz)i− (4xyz − 4xyz)j + (2xz2 − 2xz2)k = 0

Thus, the vector field F is conservative and

∫
C
F (r).dr is path independent. So, there is a scalar function f

such that F = ∇f .
∂f

∂x
= 2xyz2,

∂f

∂y
= x2z2 + zcos(yz),

∂f

∂z
= 2x2yz + ycos(yz)

Take ∂f
∂x = 2xyz2, integrate w.r.t x and we get

f(x, y, z) = x2yz2 + h(y, z)
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Differentiate w.r.t y and we get
∂f

∂y
= x2z2 +

∂h

∂y
= x2z2 + zcos(yz)

⇒ ∂h

∂y
= zcos(yz)

⇒ h(y, z) = sinyz + g(z)

⇒ f(x, y, z) = x2yz2 + sin(yz) + g(z)

Differentiate f w.r.t z and

∂f

∂z
= 2x2yz + ycos(yz) + g′(z) = 2x2yz + ycos(yz)

⇒ g′(z) = 0⇒ g(z) = c

∴ f(x, y, z) = x2yz2 + sin(yz) + c is the potential function of F. Thus the line integral using fundamental
theorem of line integral is ∫

C
F.dr =

∫ B

A
F.dr = f(B)− f(A) = π + 1

c) F = (y2, 2xy + e3z, 3ye3z) from A = (0, 1, 0) to B = (4, 2, 1).
d) F = (z2 + 2xy, x2, 3xz) from A = (2, 1, 3) to B = (4,−1, 0).

Note: If F is conservative and the curve C is a simple closed path in D, then

∫
C
F (r).dr = 0
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4.7 Green’s Theorem

The curve in the plane defined parametrically by

C = {(x, y) : r(t) = x(t)i+ y(t)j, a ≤ t ≤ b}

C is closed if its two end points are the same,i.e (x(a), y(a)) = (x(b), y(b)). A curve C is simple if it does not
intersect itself, except at the end point.

Figure 4.2: 1. simple closed curve and 2. closed but not simple curve.

Theorem:(Green’s Theorem) Let C be a simple closed positively oriented path in the plane. Let D be the
region enclosed by C, together with C. Let F1(x, y), F2(x, y), ∂F1

∂y and ∂F2
∂x be continuous on D. Then∫

C
F.dr =

∫ ∫
D

(
∂F2

∂x
− ∂F1

∂y
)dA

Figure 4.3: counter clockwise(positive) and clockwise(negative) directions

Example: Use Green’s Theorem to evaluate the following line integrals

1.

∫
C

(x2ydx+ xdy), where C is a triangle whose vertices (0, 0), (1, 0) and (1, 2) oriented CCD.

Solution Since

F1 = x2y, F2 = x⇒ ∂F1

∂y
= x2,

∂F2

∂x
= 1
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Therefore,

∫
C

(x2ydx+ xdy) =

∫ ∫
D

(
∂F2

∂x
− ∂F1

∂y
)dA

=

∫ ∫
D

(1− x2)dA

=

∫ 1

0

∫ 2x

0
(1− x2)dydx

=

∫ 1

0
(2x− 2x3)dx

= (x2 − 1

2
x4)|10

=
1

2

2.

∫
C

((ex − y3)dx+ (cosy + x3)dy), where C is the int circle x2 + y2 = 1 in the ccd.

Solution: Since ∂F1
∂y = −3y2 and ∂F2

∂x = 3x2. Thus, the line integral over C by using Green’s Theorem is

∫
C
F.dr =

∫ ∫
D

((
∂F2

∂x
− ∂F1

∂y
)dA

=

∫ ∫
D

(3x2 + 3y2)dA

= 3

∫ ∫
D

(x2 + y2)dA

Using polar coordinates, x = rcosθ, y = rsinθ for 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π

∫
C
F.dr = 3

∫ 2π

0

∫ 1

0
r3drdθ

= 3

∫ 2π

0

1

4
dθ

=
3

4
θ|2π0 =

3π

2

3.

∫
C

(x2ydx+ (y + xy2)dy), where C is the boundary of the region enclosed by y = x2 and x = y2.

4.
∫
C((7y − esinx)dx+ (15x− sin(y3 + 8y))dy), where C is the circle of radius 3 centered at (5,−7).

5.

∫
C

((ex + 6xy)dx+ (8x2 + siny2)dy), where C is positively oriented boundary of the region bounded by

the circles of radii 1 and 3, center at the origin and lying in the first quadrant.
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4.8 Surface Integrals

4.8.1 Surface Integral of Scalar functions

Suppose f is a function of three variables whose domain includes a surface S. We divide S into patches Sij
with area 4Sij . We evaluate f at a point P ∗ij in each patch, multiply by the area 4Sij , and form the sum

m∑
i=1

n∑
j=1

f(P ∗ij4Sij

Then we take the limit as the patch size approaches 0 and define the surface integral of f over the surface S as

∫ ∫
S
f(x, y, z)dS = lim

m,n→∞

m∑
i=1

n∑
j=1

f(Pij)
∗4Sij

If the surface S is a graph of a function of two variables, then it has an equation of the form
z = g(x, y), (x, y) ∈ D We first assume that the parameter domain D is a rectangle and we divide it into
smaller rectangles Rij of equal size. The patch Sij lies directly above the rectangle Rij and the point P ∗ij in
Sij is of the form (x∗i , y

∗
j , g(x∗i , y

∗
j )), then

4Sij ∼= 4Tij =
√

(gx(xi, yj))2 + (gy(xi, yj))2 + 14A

If f is continuous on S and g has continuous derivatives, then∫ ∫
S
f(x, y, z)dS =

∫ ∫
D
f(x, y, g(x, y))

√
(gx(x, y))2 + (gy(x, y))2 + 1dA

Definition 18 If the surface S is given by z = g(x, y) for (x, y) in the region D ⊂ <2, where g has
continuous first partial derivatives, then∫ ∫

S
f(x, y, z)dS =

∫ ∫
D
f(x, y, g(x, y))

√
(gx(x, y))2 + (gy(x, y))2 + 1dA

Example: Evaluate

∫ ∫
S

3zdS, where the surface S is the portion of the plane 2x+ y + z = 2 lying in the

first octant.
Solution: we have z = g(x, y) = 2− 2x− y, then gx(x, y) = −2, gy(x, y) = −1
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D = (x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2− 2x

thus, the surface integral is∫ ∫
S

3zdS =

∫ ∫
S

3(2− 2x− y)dS

=

∫ 1

0

∫ 2−2x

0
3(2− 2x− y)

√
(gx)2 + (gy)2 + 1dydx

=

∫ 1

0
3(2− 6x+ 2x2)

√
6dx

= 3
√

6(2x− 3x2 +
2

3
x3|10

=
−3
√

6

3

Example:Evaluate
∫ ∫

S zdS, where the surface S is the portion of the paraboloid z = 4− x2 − y2 lying above
the xy-plane.
Solution: Substituting z = 4− x2 − y2, we have∫ ∫

S
zdS =

∫ ∫
S

(4− x2 − y2)dS

D = {(x, y) : x2 + y2 = 4}
This gives∫ ∫

S
zdS =

∫ ∫
D

(4− x2 − y2)
√

(zx)2 + (zy)2 + 1dA =

∫ ∫
D

(4− x2 − y2)
√

4x2 + 4y2+dA

Using polar coordinate system, x = rcosθ, y = rsinθ for 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 2. Then, we have∫ ∫
S

=

∫ 2π

0

∫ 2

0
(4− r2)

√
4r2 + 1rdrdθ

=
280π

√
17− 41π

60
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Example: Evaluate

∫
S

(3x2 + 3y2 + 3z2)dS, where S is the sphere x2 + y2 + z2 = 4.

Solution:We divide the sphere into two parts:
S1 is z =

√
4− x2 − y2 above the xy-plane.

S2 is z = −
√

4− x2 − y2 below the xy-plane.
Then S = S1 ∪ S2 and the surface integral is∫ ∫

S
(3x2 + 3y2 + 3z2)dS =

∫ ∫
S1

(3x2 + 3y2 + 3z2)dS +

∫ ∫
S2

(3x2 + 3y2 + 3z2)dS

Since D = {(x, y) : x2 + y2 = 4}, then∫ ∫
S

(3x2 + 3y2 + 3z2)dS = 2

∫ ∫
S1

(3x2 + 3y2 + 3z2)dS

= 2

∫ ∫
D

(12)
√

(zx)2 + (zy)2 + 1dA

= 2

∫ 2π

0

∫ 2

0
(12)

2√
4− r2

rdrdθ

= 24

∫ 2π

0
(−2

√
4− r2)|20dθ

= 96θ|2π0
= 192π

Exercise:

1. Evaluate

∫ ∫
S
ydS, where S is the surface z = x+ y2 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

Ans: 13
√
2

3

2. Evaluate

∫ ∫
S
y2z2dS, where S is the surface z =

√
x2 + y2 that lies between the planes z = 1 and

z = 2. Ans: 21π√
2

3. Evaluate

∫ ∫
S

√
x2 + y2 + z2dS, over the portion of cone z =

√
x2 + y2 below the plane z = 1.

4. Evaluate

∫ ∫
S

√
x+ y + zdS, over the portion of plane x+ y = 1 in the first octant for which 0 ≤ z ≤ 1.

Ans: 3
√
2

2

5. Evaluate

∫ ∫
S
x2 + y2dS, where S is composed of the part of the paraboloid z =

√
1− x2 − y2 above

the xy-plane, and the part of the xy-plane that lies inside the circle x2 + y2 = 1

4.9 Surface Integral over Oriented Surface(Flux Integral)

Definition 19 Let F(x,y,z) be a continuous vector field defined on an oriented surface S with unit normal
vector n. The surface integral of F over S (or the flux of F over S) is given by∫ ∫

S
F.dS =

∫ ∫
S
F.ndS
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Figure 4.4: oriented upward and downward normal vectors

For a surface z = f(x, y) oriented upward and D is the projection of S in xy-plane, then

n =
−fxi− fyj + k√
(fx)2 + (fy)2 + 1

and dS =
√

(fx)2 + (fy)2 + 1dA
Thus, the flux integral is given by

∫ ∫
S
F.dS =

∫ ∫
S
F.ndS =

∫ ∫
D
F.(−fxi− fy + k)dA

For a surface z = f(x, y) oriented dawn ward and D is the projection of S in xy-plane, then

n =
fxi+ fyj − k√

(fx)2 + (fy)2 + 1

and dS =
√

(fx)2 + (fy)2 + 1dA
Thus, the flux integral is

∫ ∫
S
F.dS =

∫ ∫
S
F.ndS =

∫ ∫
D
F.(fxi+ fy − k)dA

1. Compute the flux of the vector field F (x, y, z) = (x, y, 0) over the portion of the paraboloid z = x2 + y2

below z = 4 (oriented with upward-pointing normal vectors).
Solution:Since the surface S is oriented upward and the projection of S in the xy-plane is

D = {(x, y) : x2 + y2 = 4}

Vector Valued Function



Fikremariam Shitiye(ASTU) 32 VECTOR VALUED FUNCTION

Thus, the flux is

∫ ∫
S
F.ndS =

∫ ∫
D
F.(−zxi− zyj + k)dA

=

∫ ∫
D

(xi+ yj).(−2xi− 2yj + k)dA

=

∫ ∫
D

(−2x2 − 2y2)dA

=

∫ 2π

0

∫ 2

0
(−2r3)drdθ

= −6π

2. Let S be the portion of the surface z = 1− x2 − y2 that lies above the xy-plane and suppose S is
oriented up. Find the flux of the vector field F (x, y, z) = xi+ yj + zk over S.
Solution:Since the surface S oriented up and the projection region is

D = {(x, y) : x2 + y2 = 1}

Thus, the flux integral is ∫ ∫
S
F.dS =

∫ ∫
D
F.(−zxi− zyj + k)dA

=

∫ ∫
D

(x, y, 1− x2 − y2).(2x, 2y, 1)dA

=

∫ ∫
D

(x2 + y2 + 1)dA

=

∫ 2π

0

∫ 1

0
(r2 + 1)rdrdθ

=
3π

2

3. Compute the flux of the vector field F (x,−1, 2x2) = (x, y, 0) over the surface z = x2 + y2 above the
region in the xy-plane bounded by the parabolas x = 1− y2 and x = y2 − 1 directed downward.

4. Compute the flux of the vector field F (x,−1, 2x2) = (x+ y, y + z, x+ z) over the portion of the plane
x+ y + z = 1 in the first octant, oriented by unit normals with positive components.

Note:If S = S1 ∪ S2 ∪ ... ∪ Sn, then∫ ∫
S
F.dS =

∫ ∫
S1

F.dS +

∫ ∫
S2

+...+

∫ ∫
Sn

dS

Example:Let F (x, y, z) = zk and S be the unit sphere x2 + y2 + z2 = 1, oriented with the normal that is

directed outward. Compute

∫ ∫
S
F.dS

Solution:Since S have two parts;upper hemisphere S1 and lower hemisphereS2.
on S1, z =

√
1− x2 − y2 and on S2, z = −

√
1− x2 − y2 and the projection of S1 and S2 are

D1 = D2 = {(x, y) : x2 + y2 = 1}
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∴
∫ ∫

S
F.dS =

∫
S1

F.dS +

∫ ∫
S2

F.dS

=

∫ ∫
D1

F.(−zxi− zyj + k)dA+

∫ ∫
D2

F.(zxi+ zyj − k)dA

= 2

∫ ∫
D

(0, 0,
√

1− x2 − y2).( x√
1− x2 − y2

,
y√

1− x2 − y2
, 1)dA

= 2

∫ ∫
D

√
1− x2 − y2dA

=
4π

3

4.10 Stokes’ Theorem

Theorem:Stokes’ Theorem
Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth
boundary curve C with positive orientation. Let F be a vector field whose components have continuous
partial derivatives on an open region in <3 that contains S. Then∫

C
F.dr =

∫ ∫
S
CurlF.dS

EXAMPLE:Evaluate
∫
C F.dr, where F = (x, y, z) = −y2i+ xj + z2k and C is the curve of intersection of the

plane y + z = 2 and the cylinder x2 + y2 = 1. (Orient C to be counterclockwise when viewed from above.)
Solution: The curve C is an ellipse
We first compute

Figure 4.5: intersection surface
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CurlF =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

−y2 x z2

∣∣∣∣∣∣ = (1 + 2y)k

Since z = 2− y and D = |(x, y) : x2 + y2 ≤ 1. Then the line integral is∫
C
F.dr =

∫ ∫
S
CurlF.dS

=

∫ ∫
D
CurlF.(−zxi− zyj + k)dA

=

∫ ∫
D

(1 + 2y)k.(j + k)dA

=

∫ 2π

0

∫ 1

0
(1 + 2rsinθ)rdrdθ

= π

Exercises:Find the work performed by the vector field F = x2i+ 4xy3j + xy2k on a particle that traverses
the rectangular C in the plane z = y with CCW direction.
Solution:since CurlF = 2xyi− y2j + 4y3k and the plane surface S enclosed by C is assigned a downward
orientation to make the orientation of C positive.

Therefore, the work done is

W =

∫
C
F.dr =

∫ ∫
S
CurlF.ndS

=

∫ ∫
D
CurlF.(zxi+ zyj − k)dA

=

∫ ∫
D

(2xyi− y2j + 4y3k)(0i+ 0j − k)dA

=

∫ ∫
D

(−y2 − 4y3)dA

= −
∫ 1

0

∫ 3

0
(y2 + 4y3)dydx

= −90

Exercises:Evaluate

∫
C
F.dr using stoke’s Theorem
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1. F = z2i+ 2xj − y3k, C is the circle x2 + y2 = 1 in the xy-plane with CCW orientation looking down the
positive z-axis.

2. F = (z + sinx)i+ (x+ y2)j + (y + ez)k, C is the intersection of sphere x2 + y2 + z2 = 1 and cone
z =

√
x2 + y2 with CCW orientation down the positive z-axis.

4.11 THE DIVERGENCE THEOREM

Figure 4.6: Flow of fluid across ∂Q = S

Theorem:(Divergence Theorem)
Suppose that Q b <3 is bounded by the closed oriented surface S and that n(x, y, z) denotes the exterior unit
normal vector to S. Then, if the components of F (x, y, z) have continuous first partial derivatives in Q, then
the flux is given by ∫ ∫

S
F.ndS =

∫ ∫ ∫
Q
DivFdV

Example:Let Q be the solid bounded by the paraboloid z = 4− x2 − y2 and the xy-plane. Find the flux of
the vector field F (x, y, z) = (x3, y3, z3) over the surface S.
Solution:The divergence of F is

DivF (x, y, z) = ∇.F (x, y, z) = 3x2 + 3y2 + 3z2
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By Divergence Theorem, the flux of F over S is given by:∫ ∫
S
F.ndS =

∫ ∫ ∫
Q
DivFdV =

∫ ∫ ∫
Q

(3x2 + 3y2 + 3z2)dV

= 3

∫ 2π

0

∫ 2

0

∫ 4−r2

0
(r2 + z2)rdzdrdθ

= 3

∫ 2π

0

∫ 2

0
(r3(4− r2) +

1

3
(4− r2)3r)drdθ

= 96π

Exercises:Use the divergence Theorem to evaluate the out ward flux of the following vector fields

1. F = zk across the sphere x2 + y2 + z2 = 4
Solution:Since DivF (x, y, z) = 1. Therefore, the flux is∫ ∫

S
F.ndS =

∫ ∫ ∫
Q
DivFdV =

∫ ∫ ∫
Q
dV

Using spherical coordinates, (ρ, φ, θ),

x = ρsinφcosθ, y = ρsinφsinθ, z = ρcosφ, 0 ≤ θ ≤ 2π; 0 ≤ φ ≤ π; 0 ≤ ρ ≤ 2

∴
∫ ∫

S
F.ndS =

∫ 2π

0

∫ π

0

∫ 2

0
ρ2sinφdρdφdθ

= −8

3
cosφ|π0dθ

=
16

3
θ|2π0

=
32π

3

2. F = 3xi+ 4yj + 5zk, S is the sphere x2 + y2 + z2 = 9

3. F = x3i+ y3j + z3, and Q be the region bounded by the xy-plane and the hemi-sphere x2 + y2 + z2 = 4

4. F = x3i+ y3j + z2, and Q be the region bounded by the circular cylinder x2 + y2 = 9 and the plane
z = 0 and z = 2.
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